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This paper studies the problem of steady two-dimensional supersonic flow of an inviscid 
compressible fluid using the new Lagrangian formulation of Hui and Van Roessel, in which 
the stream function and the Lagrangian time are used as independent variables. A shock cap- 
turing method is developed by applying the first-order Godunov scheme to the conservation 
form equations of this formulation. The method is fast and robust. Furthermore, extensive 
comparisons with exact solutions and with the second-order Godunov scheme of Glaz and 
Wardlaw based on the Eulerian formulation show that the first-order Lagrangian method 
generally attains the same level of accuracy as the second-order Eulerian method and is even 
better in resolving slip line discontinuities. c(? 1990 Academic Press. Inc. 

I. INTRODUCTION 

The numerical simulation of inviscid compressible flow as modelled by the Euler 
equations of gas dynamics is of theoretical as well as practical importance. Over the 
past four decades numerous techniques have been devised to tackle the difficulty of 
representing the shock and slip line (or contact line) discontinuities which are the 
dominant features of the flow. The three major approaches-namely, artificial 
viscosity, blending of low and high order accurate fluxes, and Godunov-type of 
using nonlinear solutions to the Riemann’s problem-have been critically evaluated 
and compared in the excellent review article of Woodward and Collella [ 11, 
especially for two-dimensioal flow with strong shocks. A more recent survey of the 
methods of treating shocks and vortex sheets can also be found in [2]. 

It appears from [l, 23 that most existing works, with the exception of one- 
dimensional flow, are based on the Eulerian method of description of fluid motion. 
Although in several important papers such as [3-51 some steps of computation 
based on Lagrangian method are also used, these are always followed by a remap 
step from a Lagrangian grid back to the original Eulerian one. 

Most existing works of Godunov-type for two-dimensional flow also use the 
method of time-splitting and arrive at a steady flow as an asymptotic state of the 
unsteady flow after marching a large number of time steps. In the case of supersonic 
flow a direct attack on the steady Euler equations is also possible, as they are of 
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hyperbolic type and a “time-like” variable can be identified. This has the clear 
advantage of reducing the number of independent variables immediately by one, 
thus rendering the (steady) two-dimensional problem to that similar to the one- 
dimensional unsteady flow. Glaz Wardlaw [6] are the first to have successfully 
developed such a direct steady flow computational scheme based on the Eulerian 
formulation. The purpose of this paper is to develop an alternative method by using 
the new Lagrangian formulation of Hui and Van Roessel [7]. 

The motivation of the present work stems from the important observation of 
Woodward and Collella [ 1 ] that “the overall accuracy of such (numerical) simula- 
tions is very closely related to the accuracy with which flow discontinuities are 
represented.” The new Lagrangian formulation, by virtue of its use of streamlines 
and time lines as coordinate lines, is expected to provide a basis for better (than 
Eulerian) representation of the slip line (contact line) discontinuities. This expecta- 
tion turns out to be well confirmed, and the new Lagrangian formulation, together 
with the Godunov scheme, appears to have advantages over the Eulerian one, 
and have the potential of accurately simulating steady and unsteady inviscid 
compressible flow of gas dynamics with relative ease of efforts. 

In Section II the new Lagrangian formulation is described briefly, which forms 
the theoretical basis for the application of Godunov scheme in Section III. Several 
test examples are given in Section IV and compared extensively with the exact solu- 
tions and with the results of Glaz and Wardlaw [6] using Eulerian formulation. 
Finally, discussions of the new Lagrangian method and conclusions are given in 
Section V. 

II. THE NEW LAGRANGIAN FORMULATION 

It is well known that there exist two basic methods of specifying fluid motion: the 
Eulerian and the Lagrangian. Although one-dimensional unsteady flow and 
problems of free boundaries composed of same set of fluid particles are often 
studied routinely and preferably using Lagrangian formulation, most of the 
theoretical and numerical studies of fluid flow are based on the Eulerian one. In 
particular, the latter clearly enjoys an advantage over the conventional Lagrangian 
one for steady flow in that the time variable t disappears so that the number of 
independent variables is immediately reduced from four to three in the Eulerian 
formulation, wheras the conventional Lagrangian formulation apparently still needs 
four independent variables.’ 

Recently, Hui and Van Roessel [7] have introduced a Lagrangian time t which 
plays a dual role of the Lagrangian label of a fluid particle while being the time of 

’ It might be argued that these four apparently independent variables must, for steady flow, satisfy an 
integral relation and thus, only three of them are truly independent. This is indeed correct. However, 
such a relation is not known a priori but, rather, is solution-dependent. So it cannot be used easily to 
eliminate one of the four independent variables explicitly. 
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motion. In this way the number of independent variables for steady flow is also 
immediately reduced from four to three, placing the new Lagrangian formulation 
on the same ground as the Eulerian one even for steady flow. Furthermore, the 
difference between Lagrangian time r and Eulerian time t in unsteady flow can be 
exploited to render the free boundary problem of flow with a shock wave a fixed 
boundary one. It has been used to solve succesfully the problem of hypersonic flow 
past three dimensional shapes [S, 91. 

We shall briefly derive the new Lagrangian formulation for steady three dimen- 
sional flow from the Eulerian formulation of motion of an inviscid, non-heat 
conducting perfect gas obeying the y-law. The equations of motion are 

V.(pV)=O (1) 

v.vv+vp/p=o (2) 

v .v(p/p”)=o, (3) 

where as usual, V denotes the velocity vector, p the pressure, p the density, and y 
the ratio of specific heats of the gas. 

First, the continuity equation (1) is eliminated by the use of two stream functions 
5 and rl, 

~V=K(5,v)VtxVul (4) 

or, equivalently, 

where xi (i= 1, 2, 3) (or x, y, z) are Cartesian coordinates, u’ (or U, v, w) the 
corresponding components of velocity, sYk is the permutation symbol, and K is an 
arbitrary function of i” and n. Second, a function t is introduced via 

a(G 4, VI P 1 
a(x', x2, x3) = K(5, = 5' (6) 

We now make the coordinate transformation from (x’, x2, x3) to (T, t, y) and 
regard the latter as independent variables. Then, by inversion we get 

au’ -=dfk~$.lzui (i=1,2,3) 
az 

and hence the material derivative 

D a axi a a -=";-,=-----=-. 
Dt axI aT axi a7 (8) 

Equations (7) and (8) clearly show that the function z introduced above is the time 
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of motion in the new Lagrangian formulation using (5, 5, q) as independent 
variables, and hence the name Lagrangian time. It plays the dual role of being the 
time of motion and, jointly with the stream functions, of labelling fluid particles. 
This places the new Lagrangian formulation on the same ground as the Eulerian 
one for steady flow in that it, too, requires only three independent variables. 

Under the transformation, the Euler equations (l)-( 3) become 

K a(% Y, Z) 
7 ah 5, VI 

(9) 

(10) 

(11) 

(l-2) 

$=S(& 7). (13) 

In the special case of two-dimensional flow, only one stream function, <, say, is 
needed and the governing equations simplify to 

K($!+a(p7y)=0 
aT a(5 4) 

K(t)-+- au a(4 P)=, 
a5 a(? 8 

K(5) W, Y) -= 
P a(5 0 

(14) 

(15) 

(16) 

;= S(i”). (17) 

Let 

ax 
u=;iE, 

j,& 
at 

H+u’+U2)+~~ 
Y-lP 

(18a) 

(18b) 

(19) 
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then from (16) 

K=p(uV-In). 

The system (14)(17) may then be written in conservation form 

where 

E= 

I 
K 

H 

Ku+pV 

Ku-pU 

u 

\ V 

Cl 

e2 

e3 
iE 

!’ e4 

e5 

e6, 

i?E dF 
-+-=o, aT at 

F= 

0 ' 

0 

-PU 

PU 
-IA 

-v I 

(20) 

(21) 

(22) 

The first four equations in (21) can, of course, also be derived directly from the 
physical laws of conservation of mass, energy, and momentum respectively, whereas 
the last two equations arise from the compatibility conditions between the 
r-derivatives (7) and the t-derivatives (18), of x and y. Equations (21) in conserva- 
tion form will be used in Section III for shock capturing based on the Godunov 
scheme. 

In the new Lagrangian formulation the coordinate lines are the streamlines and 
the time lines. Consequently, the flow tangency condition on a solid boundary is 
satisfied exactly on a coordinate line, t = to, say. We further remark that, since slip 
lines are also streamlines, they must be coordinate lines. This makes it possible to 
resolve slip lines better than Eulerian formulation. Furthermore, the streamlines 
and time lines possess much of the physics of the flow and are easily observable 
experimentally as they both are material lines. 

III. APPLICATION OF GODUNOV SCHEME 

For supersonic flow, the Mach number A4 = [p(u’ + ~‘)/yp]“~ > 1 everywhere 
in the flow field so the system (21), or equivalently, the system (14k(17), is of 
hyperbolic type. With the conservation system (21), one can, in principle, apply dif- 
ferent types of shock-capturing schemes, such as the sophisticated TVD or EN0 
(see, e.g., [lo, 111) schemes. As a first exploration of the potential of the new 
Lagrangian formulation, we apply the standard (first-order) Godunov scheme to 
(21) in a manner similar to that for one-dimensional unsteady flow. 

The computational domain in the r - r plane is illustrated in Fig. 1. A rec- 
tangular mesh is used and the computation marches in the Lagrangian time r. The 

58l/89/l-15 
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superscript n refers to the time step number and subscript j refers to the cell num- 
ber. The marching step, AT” = T’* + ’ - V, is uniform for all j. It may vary with n but 
is always so chosen as to satisfy the usual CFL linear stability condition. The mesh 
divides the computational domain into control volumes or cells which in the 
[-direction are centered at (V, tj) and have a height of Atj = cj+ 1,2 - c,- ,,* (for all n). 
Unless otherwise stated, we shall use uniform cell width so that At, = h for allj. 

The difference equations for the jth cell at time step IZ are formally derived by 
integrating (21) over the shaded rectangle in Fig. 1 and applying the divergence 
theorem. The result is 

AT” 
E,“+‘=E!-- 

’ At, 

Here for any quantity f, 

(24) 

time line time line 

@m-line 2 ‘1.1: @m-line 2 ‘1.1: 

physical plane computational 
plane 

&A n n+l 

h= 

j=l 

* 
I- 

FIG. 1. Computational domain and mesh. 



STEADY SUPERSONIC FLOW COMPUTATION 213 

is the cell-average off and 

(25) 

is its time-average. 
In the first-order Godunov scheme the jth-cell average, E,“, at time n is 

considered as constant within that cell and the flux F/“z$ along the interface 
(a streamline) between the jth cell and the (j+ 1)th cell from time step n to n + 1 
is to be obtained from the self-similar solution R( (5 - [,+ ,,*)/(r - r”); Q:, Q;+ ,) at 
5=t,+11.2 to the Riemann problem formed by two adjacent constant flow states Qy 
and Q;+ 1, where Q = (p, p, u, a)=. The solution to the Riemann problem yields a 
flow consisting of the well-known Prandtl-Meyer expansion flow and the oblique 
shock and slip line discontinuities. However, no special consideration is needed for 
slip lines as they are also streamlines in steady flow. A Newton iterative method is 
employed (see Appendix A) for solving the Riemann problem. It has fast con- 
vergence; usually only two to four iterations are needed to achieve an accuracy of 
1O-6 even in the severe cases. 

To sum up, the numerical procedures are as follows: 

Step 1. Initiation. Given a flow problem in the Eulerian x-y plane, we 
choose a line r, not itself a streamline, where the flow is known (e.g., a given 
uniform flow), and identify it as the time line t = 0 in the Lagrangian t - 5 plane. 
We then parameterize r by the stream function 5 (for instance, we take 5 equal to 
the arc length of ZJ and lay a grid t,,, 5,) . . . . tN on r. Hence along r = 0, U”, I”, 
as well as the flow Q” are known as initial conditions. In all test examples in this 
paper we take the line r = 0 perpendicular to the given uniform flow as r and 
choose r to be the arc length of f. This results in U/” = 0, VP = 1. EJ” are then 
known at r = 0 for all j by taking average within the cell. 

Step 2. With all E/” and Q: known at time step n (n = 0, 1, 2, . ..). We solve 
the local Riemann problems for all j (see Appendix A) and obtain its solution, R 
(0, QJ’, QJ’, ,), at the cell interfaces (see Appendix A). 

Step 3. The flux vectors FJ’:$ are then computed according to (25) (or, 
equivalently, according to (22), as R(0, Qy, Q;, ,) do not change with 5). Conse- 
quently, E;’ I are obtained following (23). 

Step 4. Finally we decode ET’ ’ to get Qy” and thus complete the proce- 
dure of marching forward in t by one step. The decoding is rather easy: Let 

A= 

C=e:+ei-2K2H, 
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then the pressure p satisfies the quadratic equation 

Ap2+Bp+C=0. 

It can be shown that d = B* - 4AC 2 0 and that the appropriate solution for p is 

P’ 
-B+Jd 

2A 

The other flow variables are 

(27) 

(28) 

p= K 
ue6 - ve,’ (29) 

At this stage the numerical procedure is completed. To march forward further in 
t, one goes back to Step 2 and repeats Steps 224. 

If a solid boundary is present in the flow, it must be a streamline and hence can 
be identified by 5 = const = 0, on which the inclination angle 8 is given. The bound- 
ary condition to be imposed on the solid boundary is then 

V 
- = tan 8,, 
u (30) 

where es is the inclination of the solid boundary. This results in a boundary 
Riemann problem (see Appendix A). As is well known (Glaz and Wardlaw [6], 
Noh [12], Goodman [ 131) a streamline in steady flow is a linearly-degenerate 
characteristic of the flow along which the boundary condition usually yields poor 
accuracy at the boundary for the density and Mach number if there is a slope 
discontinuity at the boundary. A special procedure similar to the one used by Glaz 
and Wardlaw [6] for boundary conditions are used to significantly improve the 
accuracy (see examples in Section IV). The details of our special procedure for 
sudden turns at the body surface are presented in Appendix B. 

We remark that the new Lagrangian method is self-contained in the Lagrangian 
plane r - 5 and does not require a remap to go back to Eulerian plane x - y in the 
process of computation. Such a remap can result in loss of accuracy. 

IV. TEST PROBLEMS 

To test the accuracy and robustness of the new Lagrangian method we apply it 
to several examples and compare the results with the exact solutions and with the 
second-order Godunov scheme of Glaz and Wardlaw using Eulerian formulation. 
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We now consider several initial-boundary value problems with or without slope 
discontinuities on the boundary. In all the cases where there is a corner at the 
boundary, we take the corner exactly at some time step Y, as this is easily done and 
helps to improve accuracy. 

The first example is a uniform supersonic flow with Mach number A4 = 3 passing 
over a smooth convex parabolic body b = -$x2. In this case there is no slope dis- 
continuity on the body surface and the flow is continuous. We use 40 grid points 
with h =0.002 to compute the expansion flow. Table I presents the computed 
pressure along the body surface and its exact values, which are obtained through 
the Riemann invariants. It is seen that the overall relative error is only 0.06%. 

The second example is that of a hypersonic stream with Mach number A4 = 10 
past a 30” wedge (Fig. 2), where 20 grid points with h = 0.01 are used. The com- 
puted results are plotted and compared to the exact solution. With the application 
of boundary conditions (30) on the wedge surface, accurate numerical results are 
obtained except on the wedge surface where, due to a sudden turn at the wedge 
apex, larger errors occur in density and Mach number. The same was found by 
Glaz and Wardlaw [6, Fig. 91 who use a special treatment to remedy it. When their 
special procedure is adopted to our Lagrangian method (see Appendix B) the large 
errors in density (and Mach number) near a solid boundary are also eliminated 
(Fig. 2b) and our first-order Lagrangian method yields results of the same level 
of accuracy as their second-order Eulerian method. To facilitate more direct 
comparison with Eulerian results we plot the curves of pressure, density, or Mach 
number versus the Eulerian co-ordinate y. 

In the third example we consider a Prandtl-Meyer flow with M= 10 and a 10” 
turning angle. Here 150 grid points are employed and h = 0.01. In a computation 
without any special procedure the relsults are plotted and compared to the exact 
ones in Figs. 3a, b. It is seen that near the body surface A’ the computed density has 
poor accuracy. With our special procedure (see Appendix B), which is equivalent to 

TABLE I 

Surface Pressure and Errors 

x 
P P % 

(computed) (exact) Error error 

0.005002 0.078529 0.078485 0.000044 0.056 

0.025054 0.075077 0.075035 0.000042 0.056 

0.050214 0.070921 0.07088 1 0.000040 0.056 

0.075474 0.066940 0.066903 0.000037 0.055 

0.100829 0.063 13 1 0.063096 o.Otw35 0.055 

0.126275 0.059492 0.059458 o.oooo34 0.057 

0.151805 0.056020 0.055987 0.000033 0.059 

0.177416 0.052709 0.052677 0.000032 0.061 

0.203101 0.049558 0.049527 0.00003 1 0.062 

Note. h= -0.25.u’, M=3, h=0.002, Ar=0.0005. 
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imposing an exact solution locally around the sudden turn of the boundary, 
accuracies are found much improved (Figs. 3c, d) and they are also comparable to 
that of the second order Eulerian method by Glaz and Wardlaw [6, Fig. lo]. 

The exact solutions for the wedge flow and the Prandtl-Meyer flow can be 
expressed either in Eulerian co-ordinates (x, y) or in Lagrangian coo-ordinates 
(T, 5). While the Eulerian version is well known, the Lagrangian version is given in 
Appendix C. 

The fourth example is that of shock interaction of Glaz and Wardlaw [6], which 
is generated in a converging channel containing both upper and lower wall slope 
discontinuities (Fig. 4). The collision of the two shocks belonging to different 
families produces two new shocks and a slip line discontinuity. The exact solution 
to this problem can be constructed using the oblique shock theory to predict the 
location and strengths of the shocks induced by the upper and lower wall slope 
discontinuities. The resulting interaction of these two shocks can be determined 
exactly by the Riemann solver in Appendix A. Figure 4 illustrates the computed 
property values at section A-A’ and B-B’ along with the exact solutions. 
Figures 4ac represent the flow upstream of the shock interaction and show the two 
shocks generated by the upper and lower slope discontinuities, whereas Figs. 4d-f 
represent the flow downstream of the interaction and show the two resulting shocks 
as well as a slip line. When comparisons of Fig. 4 with Fig. 17 of Glaz and Wardlaw 
[6] is made, we see again that our first-order Lagrangian method is just as accurate 
as their second-order Eulerian method. In fact, the slip line discontinuity is more 
sharply resolved by the first-order Lagrangian method than the second-order 
Eulerian method. In this case we use 100 grid points with h = 0.01 and apply special 
procedure to the body slope discontinuities. We also note that due to the mapping 
effect from the stream function r to y the points are distributed unevenly-they are 
denser in the compression regions than the expansion regions. In addition, as a 
result of the inaccuracy at the first step of the special procedure, the wall cell points 
are somewhat away from the other points. 

The fifth example is that of interaction shocks of the same family resulting from 
a supersonic flow past a double wedge (Fig. 5). Here we use 100 grid points with 
h = 0.005 and apply the special procedure to the first corner only. The wedge angles 
are 10” and 14”, respectively, and the free stream Mach number is 3. The exact 
solution consists of three parts: the oblique shock solutions for the first and second 
wedges and the shock collision formed by the free stream flow and the uniform flow 
behind the second shock. The shock collision is solved exactly by the Riemann 
solver (Appendix A). Since the two colliding shocks are from the same family, the 
resultant slip line inclination (24.25”) is very close to that of the uniform flow 
behind the second shock (24”). This implies that the turning angle in the P-M 
expansion is only 0.25” and the expansion fan becomes very narrow (see the little 
“kink” in Fig. 5c at B’). 

Our numerical results agree well with the theoretical solutions (solid lines). 
Results on time line A -A’ (Figs. Sa, b) represent a typical solution before the 
shock collision. Two shoks are observed along A - A’. Results on time line B - B’ 
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(Figs. 5c, d) represent a typical solution after shock interaction. Here we observe a 
strong shock and a weak P-M expansion. From Fig. 5c it is seen that around the 
location B' of the Prandtl-Meyer expansion fan the numerical pressure value does 
increase slightly. 

Now we turn to test our numerical method for the pure initial value problems. 
Two Riemann problems are considered in Figs. 6 and 7. Riemman problem No. 1 

is formed by the confluence of two parallel streams with different states and is the 
one used by Glaz and Wardlaw [6]. The ratios in pressure, density, and Mach 
number across the two streams are 4, 2, and $, respectively. In the exact solution, 
the resulting interaction produces an oblique shock adjacent to the low-pressure 
stream and a Prandtl-Meyer expansion flow on the high-pressure stream side. The 
resulting density jump across the slip line is ;. Numerical results for the flow 
properties at section A -A’ (a time line) are shown in Fig. 6 along with the 
exact solution which was generated using the Riemann solver in Appendix A. 
Comparisons with the Eulerian results of Glaz and Wardlaw [6, Fig. 151 show 
again that our first-order Lagrangian method attains the same level of accuracy 
as their second-order Eulerian method in representation of shock and slip line 
discontinuities. In fact, the slip line discontinuities are better resolved by our 
first-order Lagrangian method than their second-order Eulerian method. However, 
our first-order Lagrangian results are less accurate than their second-order Eulerian 
results for the continuous flow (expansion). 

Riemann problem No. 2 formed by two intersecting streams is shown in Fig. 7. 
Here, the angle of inersection between the streams is 15” while the ratio in pressure, 
density, and Mach number jumps across the two streams are 10, 5, and 1.5, respec- 
tively. This is clearly a more severe case than Riemann problem No. 1, but the 
resulting interaction produces similar feasures, namely, an oblique shock adjacent 
to the low-pressure stream and a Prandtl-Meyer expansion flow on the hight- 
pressure steam side. The Mach number jump across the slip line is 6.7039/2.6118. 
Numerical results following a time line r = ra are shown in Fig. 7 along with the 
exact solution which was generated using the Riemann solver in Appendix A. 
Again, it is seen that shock and slip line discontinuities are sharply resolved by the 
first-order Godunov scheme based on the new Lagrangian formulation. 

Finally, we consider the flow past a sharp-nosed body. The free stream Mach 
number is 3 and the body surface is specified as follows: 

h= 
i 
x2, x do.25 
0.0625, x>O.25. 

In the computation we use 120 grid points with h = 0.006 uniformly. The time step 
size AT is first chosen to be 0.001 and then reduced to 0.0001 around the shock area. 
The computed streamlines are presented in Fig. 8a, in which one sees the formation 
and development of a strong floating shock and the expansion flow downstream of 
it. A theoretical analysis shows that the floating shock begins at x=0.11 and our 
picture (Fig. 8) shows that the numerical result is about right. In Fig. 8b we also 
present the Mach lines of the same flow which show clearly the shape of the shock. 
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V. DISCUSSIONS AND CONCLUSIONS 

A numerical method for computing inviscid steady supersonic flow has been suc- 
cessfully developed by applying the Godunov (first order) scheme to the gas 
dynamic equations based on the new Lagrangian formulation of Hui and Van 
Roessel. It is fast, accurate, easy to program, and robust. 

The main feature of the new Lagrangian formulation is its use of the stream func- 
tion 5 and the Lagrangian time z as independent variables, with the consequence 
that the body surface boundary condition is satisfied exactly on a co-ordinate line. 
The transformation from the Cartesian co-ordinates (x, y) to the Lagrangian 
co-ordinates (T, 5) may be regarded as a form of grid generation required to render 
the body surface a co-ordinate line. As such it is quite a natural one, and it is 
interesting to note that although the streamlines and the time lines are non- 
orthogonal the resulting transformed equations (21) remain very simple, without 
the additional metric tensor terms usually arising from non-orthogonality of the 
transformed co-ordinates. The new Lagrangian method of computation is also 
self-contained without re-mapping to the Eulerian space. 

It should be noted that the Lagrangian time z is a true time variable of motion 
as distinguished from any-time-like variable, x say, in the Eulerian formulation. 
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0 36 
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Y 
FIG. 6. Flow variables vs Eulerian co-ordinate y (normalized) along time line A - A’ (7 = 0.125). In 

all ligures solid lines denote the exact solution: (a) pressure; (b) density; (c) Mach number. 
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FIG. 8. (a) Computed streamlines for M = 3 supersonic flow past a given body. (b) Mach lines for 
M = 3 flow past a given body. 



230 LOHANDHLJI 

Marching in r means following the fluid particle along its path. Thus, the computa- 
tion method follows exactly the particle movement even when it crosses a shock 
where flow direction changes abruptly. By contrast, a time-like variable, x say, is 
a fixed direction in space. Consequently, marching in x does not always follow the 
fluid particle closely, especially when it crosses a shock; this is a source of numerical 
error. 

In summary, in the new Lagrangian method of computation using streamlines 
and time lines as co-ordinate lines, the flow is followed most closely. Indeed, a cell 
is exactly a fluid particle and remains intact for all time. All of these probably 
contribute to the result of this paper that a first-order Godunov scheme based on 
the new Lagrangian formulation generally attains the same level of accuracy as the 
second order Godunov method of Glaz and Wardlaw [6] using Eulerian formula- 
tion, and is even better in resolving slip line discontinuities. 

APPENDIX A: THE RIEMANN PROBLEM AND ITS SOLUTION 

As an analogue to the Riemann problem in one-dimensional unsteady flow, in 
the two-dimensional steady supersonic flow the Riemann problem for (21) (strictly 
speaking, only the first four equations of (21); the other two equations are 
compatibility relations) is the initial value problem with the constant data 

as initial condition at z = 0 for the flow state Q = (p, p, U, u)‘. The subscripts T and 
B denote top and bottom states, which are counterparts to the right and left states 
in 1D unsteady flow. 

The solution of the Riemann problem is self-similar in the variable r/r and 
consists of three types of elementary waves, namely, the oblique shock waves (+ ), 
the Prandtl-Meyer expansions (- ) and slip lines (0). They correspond to the 
shocks, rarefaction waves, and contact discontinuities in 1D unsteady flow, respec- 
tively (Fig. 9). 

Let Q. and Q be the states across one of the above +, 0, and - elementary 
waves, then there are three cases: 

(a) The wave is a slip line. In this case we have 

P=Po-p*, e=tan-’ U =6,=tanp’ ‘0 &j*, 
0 u 0 UO 

However, the density and velocity components may jump abruptly. 
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T 

slip line 

FIG. 9. Elementary waves in the solution of Riemann problem. 

(b) The wave is an oblique shock (p >pO). In this case we have, from the 
Rankine-Hugoniot oblique shock relation, for the flow deflection angle, 

de= &tan-’ w4~ 
(y+l)cc+(y-1) (A.3) 

or the flow inclination 

f3=OOfdf9=8,ftan-’ 4-i 
(y+l)a+(y-1) 

-1 (A.37 

and 

p=p,b+lb+Y-l 
(y- l)cr+y+ 1’ 

M= 

[ 

M;[(y+l)cc+y-1]-2(61) 1’2 

d(Y-lb+(Y+l)l 1 
where 

(c) The wave is a Prandtl-Meyer expansion. In this case we have 

1+((~--1)/2)Mi-~ I” 
cc(Y ~ 1 VY >I 

and 

(A.41 

(A.5) 

p = pocl’/‘. (A.7) 
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The flow turning angle and inclination angle are respectively 

AO= f [v(M)-~(M,,)I, 8 = &I f [V(M) - v(M,)l, 

where 

(A.81 

v(M)=$$tan~‘(/m)-tan’(Jz) (A.9) 

is the Prandtl-Meyer function. 
Therefore, through any state Q,,, with a =p/p, as parameter, there are two 

families of states connecting to Qo, namely, the compression states ((x > 1) and the 
expansion states (CX < 1). As is well known, similar to the 1D unsteady flow [ 141, 
the curves of the two families have second-order contact at Q. and can be regarded 
as one single family. For example, in the p - 8 plane, the two curves form a single 
smooth curve at Q= QB, say (Fig. 10). This forms the basis of the Newton’s 
method in the following solution procedure for solving the Reimann problem: 

(i) In the p- 8 plane there are two curves that pass through the states 
Q. = QT and Q. = QB; they are defined, respectively, by 

8,+ tan’ 
E-1 

i yM$-a+1 (y+l)c(+y-1 ’ 
a31 

e=@,(a)= (A.lO) 

8,+ V(MT) - v(W, a61 

P 

/M / 
/ 

t 

/ ‘\ 
/ \ 

: 

---- subsonic \ 
branches (not used 1 ‘1 

Riemonn problem 

/ guess 
P 
e 

FIG. 10. Solution procedure .of Riemann problem. 
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where CI = p/pr, and 

where cc=p/pe. In (A.10) and (A.11) v(M) is given by (A.9) (with (A.6)). These 
curves are sketched in Fig. 10. 

(ii) A standard Newton’s iterative procedure is employed to find the intersect 
(p*, tY*) of the two curves. The object function in the Newton procedure is 

.f(P) = @AP/PT)b @B(P/PB) (A.12) 

and the intersect of the two tangent lines passing through QT and Qe is used as an 
initial guess to the solution. In practice we use numerical derivatives to replace the 
analytical ones. Usually it takes two to four iterations to converge to a tolerance 
E d 10P6. We have tested on a quite severe case: pr= 0.01, p7= 0.05, M,= 3.5, and 
pe = 1.0, ps = 1.0, M, = 10, it takes four iterations to convergence. 

(iii) With the slip line values p* and f3* known, we calculate CI and p on both 
sides of the slip line and then calculate the velocity components u and u, again on 
both sides of the slip line, using the formula 

u= wcosd* 

v= Wsin 0*, 

where 

W=MJGG. 

(A.13) 

(A.14) 

These flow states on both sides of the slip line then yield the fluxes F,, ,,2 for all 
j> 1. 

At a solid boundary the flow tangency condition (30) must be imposed. This 
gives rise to the following Riemann problem, called the boundary Riemann 
problem, with the initial condition 

Q=Qn ir>o 

Q=QB> i”<o (A.15) 

o=e*=0,, < = 0, 

where Qe is the mirror image flow of QT with respect to 0,. In this way the 
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boundary condition is automatically satisfied. The solution procedure is then the 
same as that which we have described above. 

Alternatively, by replacing Qs with 0, in (A.12) we can solve for p* directly. 
However, since 0, is generally given in terms of x and hence of r only indirectly, 
we need another iterative loop to achieve a better accuracy along the body surface. 
The details are given as follows: 

(i) Assume that the state Q”, and X” at time step n are known already. Let 
t?* = tan’[b’(x”)]. 

(ii) Using u; as the intitial guess for z/l+‘, we have 

X n+‘=xn+$p+Un+‘)& 

and 

8*=tan’(b’[x”+$u”+u”+‘)dr]}. (A.16) 

(iii) Solve the boundary Riemann problem with the above 8* as the 
boundary condition to get a new state Q”’ ‘, and in particular u”+ ‘. 

(iv) The new u”+’ is then substituted back to (A.16) and a new f3* is 
evaluated. 

(v) We then repeat (ii)- until the tolerance between two successive B*s 
is less than a prescribed small number (say, 10e6). 

In our experience it usually takes one to 10 iterations to convergence. 

APPENDIX B: 
SPECIAL PROCEDURE AT A SUDDEN TURN OF BODY SURFACE 

When a supersonic gas flow over a body encounters a sudden turn at the body 
surface, an oblique shock or a Prandtl-Meyer expansion will occur locally. The 
numerical scheme does not cope well with the sudden change and is likely to lead 
to a certain loss of acuracy (Glaz and Wardlaw [6], Noh [12], Goodman [13]). 
The larger the Mach number upstream of the turn and the larger the turning angle, 
the larger the resulting error. In order to improve the numerical accuracy 
downstream of the turn we impose the analytical solution at the turn locally. This 
special procedure is similar to the procedure used by Glaz and Wardlaw [6]; the 
details are described as follows: 

(1) in the case of a sudden compression. (The following procedure is that of 
Glaz and Wardlaw [6].) 

(a) Adjust time step size AT so that the turning corner is hit exactly by a 
mesh time line (at “0” in Fig. 11). 



(b) 

(c) 

(d) 

STEADY SUPERSONIC FLOW COMPUTATION 

1 time line 

235 

FIG. 11. Special procedure for compression turn. 

Store the flow state Q, and E, upstream of “0.” Then use the 
Rankine-Hugoniot relation to calculate the exact downstream 
state Qd. 
In the physical plane when the wall (boundary) cell still lies across the 
shock, temporarily give up using the boundary Riemann solver and 
assign Qd as the wall flux (along “OC” in Fig. 11) in the numerical 
procedure. 
When the wall cell is completely downstream of the shock, assign the 
state Qd to the wall cell (shaded area in Fig. 1 l), and use (21) and the 
divergence theorem to calculate E, along the quadrilateral oabc. Now 
terminate the special procedure and resume the normal one. 

(2) in the case of sudden expansion. 

(a) Adjust time step size so that the turning corner is hit exactly by a mesh 
time line (at “0” in Fig. 12). 

(b) Store the flow state Q, and E, upstream of “0” and use Q, to calculate 
the exact Prandtl-Meyer flow Qd. 

stream-line 

FIG. 12. Special procedure for expansion turn 
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(c) 

(d) 
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Use Appendix C to check the locations of cell centers along a time line. 
Once a cell center enters the expansion fan or the uniform region 
behind it, we temporarily disregard all the local Riemann solvers and 
simply assign the exact state Qd to that cell in the numerical procedure, 
until the wall cell (shadded one in Fig. 12) first entirely enters the 
uniform region downstream of the expansion fan. 
Use (21) and the divergence theorem to evaluate E, along the curved 
quadrilateral “oabc” for continuing computation, and the special proce- 
dure is terminated. 

Our special procedure in (2) is somewhat different from that in [6] (Glaz and 
Wardlaw) and yields satisfactory numerical results. 

APPENDIX C: 
ANALYTICAL SOLUTIONS FOR ELEMENTARY WAVES IN THE t-5 FORMULATION 

In this appendix we present the exact analytical solutions for elementary waves, 
namely, oblique shock wave and Prandtl-Meyer expansion in the r - l formulation 
so that we can compare our numerical results directly with the exact results rather 
than going through the remapping to the Eulerian space; the remapping can cause 
additional errors. The problem is as follows: with a given free stream state Q, and 
given any (r, 5) coordinates in the Lagrangian system find the state Q at the 
location (r, i;). 

(1) In the case of an oblique shock, from the geometrical relation in Fig. 13 
the solution is simple: if 4 > u, T cot ps, the point P falls in Region I, and 

Q=Q,> 

Y 

/ 
time line 

t 
II x 

FIG. 13. Analytical solution for an oblique shock in r - 5 formulation. 
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where P.,, G, and Q, are respectively the oblique shock angle, free stream 
velocity, and the free stream state in I. 

If < <u, r cot /IF, the point P falls in Region II and 

Q=Q.,, 

where Q,, is the constant state behind the oblique shock. 

(2) In the case of a Prandtl-Meyer expansion flow the following notations 
are used (see Fig. 14): 

M,-free steam Mach number, 

a I -free stream sound speed, 

pot = sin ‘( l/M,)-Mach angle, 

3, = ,,/( y - 1 )/( y + 1 ), where y ( = 1.4) is the ratio of specific heats, 

H, =(l/JU)tan’(jmJm 

Let d =0, +pL, -z/2, then (see Hui [lS]), 

u = c sin A(0 + A), 

11 = ci cos i( 8 + A), 
(A.17) 

where u is the radial velocity component and u the transversal velocity component 
(Fig. 14) and 

c = a, JM;d + 2/(y - 1). (A.18) 

We also define the initial time line T = 0 as the vertical line passing through 0 (the 
dashline in Fig. 14). Then 

(i) in Region I, where the given z and 5 satisfy T < z0 = 5 J-/u,, we 
have exactly the free steam uniform flow. 

FIG. 14. Analytical solution of Prandtl-Meyer flow in 5 - 5 formulation. 
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(ii) in Region II, i.e., in the expansions fan for which z0 < r d r,, where T, is 
given in (A.25). Let (r, 0) be the polar co-ordinates of a fluid particle then, the 
equation of its streamline is (Fig. 14) 

(A.19) 

Recalling (A.17) we find 

dr u 
~=;d0=~tanI(B+d)d(B+~), 

which integrates to give 

r=Kcos ~ ““‘/I(6 + A), (A.20) 

where K = K(t) is a constant along a given streamline. To determine K, we recall 
that 8 + A = 6, and, r = r/sin pX = M, th at 6 = 6, - n/2 - pu,; hence 

K= K(t) = M, r cos”“‘(i8,). (A.21) 

From (A.19), 

dr=rdO=~cos~2’;“~11[i(B+A)]de. 
V 

(A.22) 

In particular, if y = 1.4, we get 

K dl(B+ A) 
dT=&os7[~(~+A)]~ 

Let 

K(4) 
A =A(()=C12= 

Mm< co~(‘+‘)‘(~--)(M~) y+ 1 

a, &4k+(2/(y-1)) Y-l’ 

then (A.23) can be integrated to give 

z=to+A s o: 
dA(8+ A) 

COS~~/(~- “[,I(6 + A), ’ 

in particular, 

z,=2,+A I @:’ 
M(B+ A) 

COS~~‘(~- “[l(O+ A)]’ 

(A.23) 

(A.24) 

(A.25) 

where 8,) given in (A.29), is the angle between the time line r = 0 and the last Mach 
line of the Prandtl-Meyer expansion fan. 
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With (t, 5) given, 0 = 6(z, 0. In the computation an inverse function of (A.24) is 
needed to determine the flow. This can be obtained by a Newton iterative proce- 
dure as follows: Let 

Then define the object functions as 

hence 

-f (Q; d(e)=T 

c/h’(e) = -f’(e) = -A({ 1 
i” 

cos2~‘(~-‘)[l”(e+A)]’ 

The Newton procedure is then carried out as 

Q’” + 1) = (p, + cos2~‘(~- ‘)[A(@@ + A)] d(e(“)) 

AA(t) 
(A.26) 

where, as usual, the superscript (n) denotes the nth iteration. O(“) = (0, + 0,)/Z can 
be used as initial guess and the integral Jz, (dlE(8 + A)/cos~~~(~- “[,I(0 + A)]) can be 
calculated analytically for y = 1.4 or numericaly by Simpson’s rule. 

In the expansion fan once 8 is determined for the given (r, 0, the usual 
Prandtl-Meyer flow formulas are employed: 

M(e)= 1 +$tan2[i(H+A)], 

[ 

1 + ((y - 1)/2)MZ, y’(9p ‘) 
P’PCC 

1 + ((Y - 1 mwuu 1 (A.27) 

[ 

1 +((y- 1)/2)M2, ‘;(yV’) 
P'P3c 

I + (cy - 1)/2)kP(e) 1 . 

(iii) in Region III, i.e., r > rl, the flow is uniform. We apply the usual 
Prandtl-Meyer relations. First, we calculate the Mach number M, from the 
equation 

v(M, I= 6 + v(M,), (A.28) 

where 6 is the flow turning angle (Fig. 14). The inversion of the PrandtllMeyer 
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function v(M,) to yield M, is done by a Newton iterative procedure. We then 
calculate 

(A.29) 

and z, is evaluated from (A.25). When T 3 t, the flow is in the Region III with 
M- M, and p, p from (A.27). 
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